Sains Malaysiana 54(4)(2025): 1037-1052

http://doi.org/10.17576/jsm-2025-5404-06

 

Polycyclic Aromatic Hydrocarbons in Volatile and Particle Phases over the Vicinity of Petrochemical Refinery Areas

(Hidrokarbon Aromatik Polisiklik dalam Fasa Meruap dan Fasa Zarah di Persekitaran Kawasan Penapisan Petrokimia)

 

SHARANYA RAMANATHAN1, SITI JARIANI MOHD JANI1, ZAMZAM T.A. RAMLY2, MUHAMMAD NURUL HUDA3, NOWSHIN JAHAN LAMIA4, NAZIFA NAWYAL4 & MD FIROZ KHAN4,*

 

1Department of Chemistry, Faculty of Science, Universiti Malaya, 50603, Kuala Lumpur, Malaysia

2Department of Environment, Faculty of Forestry and Environment, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia

3Centre for Advanced Research in Sciences (CARS) University of Dhaka, Dhaka 1000, Bangladesh

4Department of Environmental Science and Management, North South University, Bashundhara, Dhaka 1229, Bangladesh

 

Diserahkan: 10 Jun 2024/ Diterima: 17 Disember 2024

 

Abstract

The distribution of gaseous and particulate polycyclic aromatic hydrocarbons (PAHs), sources, and human exposure were studied around a petrochemical site located in Melaka, Malaysia from March 2021 - March 2022. Polyurethane (PUF) sampler devices were placed in six different areas to collect gaseous phase PAHs, and a High Volume Air Sampler (HVS) device was placed at a single location to collect PM2.5-bound PAHs. PUF samplers utilize porous foam to absorb PAHs passively with zero external power for long-term exposure monitoring. Meanwhile, the HVS device draws air at higher flow rates for more than a day. A total of sixteen PAHs were analyzed in both particulate and gaseous phases. The average concentrations for the gaseous phase (n=48) were 15.90±27.29, 10.41±16.74, 7.47±18.18, 8.19±15.70, 9.39±19.35, and 11.19±28.35 ng/m3 at Sri Vanathandavar Temple, Masjid Wadhi, Tadika Cahaya, Tadika Pasti, Monforth Youth Centre, and Maha Mariamman Temple, respectively, whereas the average concentration of particulate phase (n=35) was 0.24±0.23 ng/m3 at SK Sungai Udang. In the gaseous phase, the seasonal variations at sampling sites in Southwest Monsoon (June – September) observed the greatest level at 13.89±4.69 ng/m3 and the lowest during Intermonsoon 1 (October – November) at 8.22±5.26 ng/m3. The diagnostic ratio showed that the primary contributors of PAHs in both phases are traffic emissions, petroleum and coal burning. The total Benzo(a)Pyrene equivalent carcinogenic (BaPeq) exposure was 5.27 - 22.02 ng/m3 in the volatile phase and 1.18 ng/m3 in the particulate aerosol phase. For carcinogenic risk, the incremental lifetime cancer risk (ILCR) in adults was higher compared to children and adolescents in both gaseous and particulate phases. The Hazard Quotient (HQ) for the adolescent in the gaseous phase (9.86E-03) was relatively higher compared to the particulate aerosol phase (1.01E-03).

Keywords: Carcinogens; passive air sampling; petroleum sites; sources

Abstrak

Pengagihan hidrokarbon aromatik polisiklik (PAH) dalam gas dan sumber zarah serta pendedahan manusia kepada PAH telah dikaji di sekitar tapak petrokimia yang terletak di Melaka dari Mac 2021 hingga Mac 2022. Peranti pensampelan poliuretana (PUF) diletakkan di enam lokasi untuk mengumpul PAH fasa gas, manakala satu peranti pengambil sampel udara berkelantangan tinggi (HVS) digunakan di satu lokasi untuk mengumpul PAH terikat PM2.5. ​PUF menyerap PAH secara pasif tanpa kuasa luar untuk pemantauan jangka panjang, sementara HVS menarik udara pada kadar aliran tinggi untuk beberapa hari. Sebanyak enam belas PAH telah dianalisis daripada fasa zarah dan gas. Kepekatan purata untuk fasa gas (n=48) ialah 15.90±27.29, 10.41±16.74, 7.47±18.18, 8.19±15.70, 9.39±19.35 dan 11.19±28.35 ng/m3 masing-masing di Kuil Sri Vanathandavar, Masjid Wadhi, Tadika Cahaya, Tadika Pasti, Pusat Belia Monforth dan Kuil Maha Mariamman, manakala purata kepekatan zarah di SK Sungai Udang (n=35) ialah 0.24±0.23 ng/m3. Dalam fasa gas, variasi bermusim di tapak pensampelan pada Monsun Barat Daya (Jun - September) memerhatikan kepekatan purata terbesar pada 13.89±4.69 ng/m3 dan yang terendah semasa antara monsun 1 (Oktober - November) pada 8.22±5.26 ng/m3. Nisbah diagnostik mendedahkan bahawa penyumbang utama PAH dalam kedua-dua fasa ialah pelepasan lalu lintas, petroleum dan pembakaran arang batu. Jumlah pendedahan karsinogenik setara Benzo(a)Pirena (BaPeq) ialah 5.27 - 22.02 ng/m3 untuk fasa gas dan 1.18 ng/m3 untuk fasa zarah. Untuk risiko karsinogenik, peningkatan risiko kanser seumur hidup (ILCR) pada orang dewasa adalah lebih tinggi berbanding kanak-kanak dan remaja dalam kedua-dua fasa gas dan zarah. Darjah bahaya (HQ) untuk kumpulan remaja dalam fasa gas (9.86E-03) adalah lebih tinggi berbanding fasa zarah (1.01E-03).

Kata kunci: Karsinogen; persampelan udara pasif; sumber; tapak petroleum

 

RUJUKAN

Abdel-Shafy, Hussein I. & Mona SM Mansour. 2016.  A review on polycyclic aromatic hydrocarbons: source, environmental impact, effect on human health and remediation. Egyptian Journal of Petroleum 25 (1): 107. https://doi.org/10.1016/j.ejpe.2015.03.011

Adelin Anwar, Liew Juneng, Mohamed Rozali Othman & Mohd Talib Latif. 2010. Correlation between hotspots and air quality in Pekanbaru, Riau, Indonesia in 2006-2007. Sains Malaysiana 39(2): 169-174.

Adeyeye, E.I., Ibigbami, O.A., Adesina, A.J., Popoola, O.K., Olatoye, A.R. & Gbolagade, Y.A. 2023. Assessment of polycyclic aromatic hydrocarbons (PAHs) distribution in water, sediments and fish parts from ponds in Ado-Ekiti, Nigeria. Polycyclic Aromatic Compounds 43(4): 3147-3158. https://doi.org/10.1080/10406638.2022.2064884

Akyüz, M. & Çabuk, H. 2010. Gas-particle partitioning and seasonal variation of polycyclic aromatic hydrocarbons in the atmosphere of Zonguldak, Turkey. Science of the Total Environment 408(22): 5550-5558. https://doi.org/10.1016/j.scitotenv.2010.07.063

Amit Kumar, Balram Ambade, Tapan Kumar Sankar, Shrikanta Shankar Sethi & Sudarshan Kurwadkar. 2020. Source identification and health risk assessment of atmospheric PM2.5-bound polycyclic aromatic hydrocarbons in Jamshedpur, India. Sustainable Cities and Society 52: 101801. https://doi.org/10.1016/j.scs.2019.101801

Anas Ahmad Jamhari, Mohd Talib Latif, Muhammad Ikram A. Wahab, Murnira Othman, Haris Hafizal Abd Hamid, Perapong Tekasakul, Mitsuhiko Hata, Masami Furuchi & Nor Fadilah Rajab. 2021. Size-segregated atmospheric polycyclic aromatic hydrocarbons down to PM0.1 in urban tropical environment: Temporal distribution, potential sources and human health risk. Urban Climate 40: 100996. https://doi.org/10.1016/j.uclim.2021.100996

Anas Ahmad Jamhari, Mazrura Sahani, Mohd Talib Latif, Kok Meng Chan, Hock Seng Tan, Md Firoz Khan & Norhayati Mohd Tahir. 2014. Concentration and source identification of polycyclic aromatic hydrocarbons (PAHs) in PM10 of urban, industrial and semi-urban areas in Malaysia. Atmospheric Environment 86: 16-27. https://doi.org/10.1016/j.atmosenv.2013.12.019

Aouizerats, B., Van Der Werf, G.R., Balasubramanian, R. & Betha, R. 2015. Importance of transboundary transport of biomass burning emissions to regional air quality in Southeast Asia during a high fire event. Atmospheric Chemistry and Physics 15: 363-373. https://doi.org/10.5194/acp-15-363-2015

Balasubramanian, R., Qian, W.B., Decesari, S., Facchini, M.C. & Fuzzi, S. 2003. Comprehensive characterization of PM2.5 aerosols in Singapore. Journal of Geophysical Research: Atmospheres 108(D16): 4523. https://doi.org/10.1029/2002jd002517

Biswa Mohan Sahoo, Bera Venkata Varaha Ravi Kumar, Bimal Krishna Banik & Preetismita Borah. 2020. Polyaromatic hydrocarbons (PAHs): Structures, synthesis and their biological profile. Current Organic Synthesis 17(8): 625-640. https://doi.org/10.2174/1570179417666200713182441

Brändli, R.C., Bucheli, T.D., Ammann, S., Desaules, A., Keller, A., Blum, F. & Stahel, W.A. 2008. Critical evaluation of PAH source apportionment tools using data from the Swiss soil monitoring network. Journal of Environmental Monitoring 10(11): 1278-1286. https://doi.org/10.1039/b807319h

Chen, Y., Ma, J., Duan, H. & Miao, C. 2019. Occurrence, source apportionment, and potential human health risks of metal (Loid)s and PAHs in dusts from driving school campuses in an urban area of Henan, China. Environmental Science and Pollution Research 26(29): 30029-30043. https://doi.org/10.1007/s11356-019-06044-7

Cincinelli, A., Del Bubba, M., Martellini, T., Gambaro, A. & Lepri, L. 2007. Gas-particle concentration and distribution of n-alkanes and polycyclic aromatic hydrocarbons in the atmosphere of Prato (Italy). Chemosphere 68(3): 472-478. https://doi.org/10.1016/j.chemosphere.2006.12.089

Elzein, A., Stewart, G.J., Swift, S.J., Nelson, B.S., Crilley, L.R., Alam, M.S., Reyes-Villegas, E., Gadi, R., Harrison, R.M., Hamilton, J.F. & Lewis, A.C. 2020. A comparison of PM2.5-bound polycyclic aromatic hydrocarbons in summer Beijing (China) and Delhi (India). Atmospheric Chemistry and Physics 20(22): 14303-14319.

Field, R.D., Van Der Werf, G.R. & Shen, S.S.P. 2009. Human amplification of drought-induced biomass burning in Indonesia since 1960. Nature Geoscience 2(3): 185-188. https://doi.org/10.1038/ngeo443

Fujii, Y., Tohno, S., Amil, N., Latif, M.T., Oda, M., Matsumoto, J. & Mizohata, A. 2015. Annual variations of carbonaceous PM2.5 in Malaysia: Influence by Indonesian peatland fires. Atmospheric Chemistry and Physics 15(23): 13319-13329. https://doi.org/10.5194/acp-15-13319-2015

Garban, B., Blanchoud, H., Motelay-Massei, A., Chevreuil, M. & Ollivon, D. 2002. Atmospheric bulk deposition of PAHs onto France: Trends from urban to remote sites. Atmospheric Environment 36(34): 5395-5403. https://doi.org/10.1016/S1352-2310(02)00414-4

Guo, Y., Wu, K., Huo, X. & Xu, X. 2011. Sources, distribution, and toxicity of polycyclic aromatic hydrocarbons. Journal of Environmental Health 73(9): 22-25.

Hamidah Suradi, Md Firoz Khan, Nor Asrina Sairi, Haasyimah Ab Rahim, Sumiani Yusoff, Yusuke Fujii, Kai Qin, Md Aynul Bari, Murnira Othman & Mohd Talib Latif. 2021. Ambient levels, emission sources and health effect of PM2.5-bound carbonaceous particles and polycyclic aromatic hydrocarbons in the city of Kuala Lumpur, Malaysia. Atmosphere 12(5): 549. https://doi.org/10.3390/atmos12050549

He, J. & Balasubramanian, R. 2010. Semi-volatile organic compounds (SVOCs) in ambient air and rainwater in a tropical environment: Concentrations and temporal and seasonal trends. Chemosphere 78(6): 742-751.

Jia, J., Deng, L., Bi, C., Jin, X., Zeng, Y. & Chen, Z. 2021. Seasonal variations, gas-PM2.5 partitioning and long-distance input of PM2.5-bound and gas-phase polycyclic aromatic hydrocarbons in Shanghai, China. Atmospheric Environment 252: 118335.

Jia, T., Guo, W., Xing, Y., Lei, R., Wu, X., Sun, S., He, Y. & Liu, W. 2021. Spatial distributions and sources of PAHs in soil in chemical industry parks in the Yangtze River Delta, China. Environmental Pollution 283: 117121. https://doi.org/10.1016/j.envpol.2021.117121

Jiang, Y., Hu, X., Yves, U.J., Zhan, H. & Wu, Y. 2014. Status, source and health risk assessment of polycyclic aromatic hydrocarbons in street dust of an industrial city, NW China. Ecotoxicology and Environmental Safety 106: 11-18. https://doi.org/10.1016/j.ecoenv.2014.04.031

Kamal Hassan, S. & Khoder, M.I. 2012. Gas-particle concentration, distribution, and health risk assessment of polycyclic aromatic hydrocarbons at a traffic area of Giza, Egypt. Environmental Monitoring and Assessment 184(6): 3593-3612. https://doi.org/10.1007/s10661-011-2210-8

Kim, J.Y., Lee, J.Y., Kim, Y.P., Lee, S.B., Jin, H.C. & Bae, G.N. 2012. Seasonal characteristics of the gaseous and particulate PAHs at a roadside station in Seoul, Korea. Atmospheric Research 116: 142-150. https://doi.org/10.1016/j.atmosres.2012.03.011

Kishida, M., Nishikawa, A., Fujimori, K. & Shibutani, Y. 2011. Gas–particle concentrations of atmospheric polycyclic aromatic hydrocarbons at an urban and a residential site in Osaka, Japan: Effect of the formation of atmospherically stable layer on their temporal change. Journal of Hazardous Materials 192(3): 1340-1349. https://doi.org/10.1016/j.jhazmat.2011.06.046

Kulkarni, K.S., Sahu, S.K., Vaikunta, R.L., Pandit, G.G. & Lakshmana, D.N. 2014. Characterization and source identification of atmospheric polycyclic aromatic hydrocarbons in Visakhapatnam, India. Int. Res. J. Environ. Sci. 3(11): 57-64.

Lee, D.G., Lavoué, J., Spinelli, J.J. & Burstyn, I. 2015. Statistical modeling of occupational exposure to polycyclic aromatic hydrocarbons using OSHA data. Journal of Occupational and Environmental Hygiene 12(10): 729-742. https://doi.org/10.1080/15459624.2015.1043049

Liu, H., Li, B., Qi, H., Ma, L., Xu, J., Wang, M., Ma, W. & Tian, C. 2021. Source apportionment and toxic potency of polycyclic aromatic hydrocarbons (PAHs) in the air of Harbin, a cold city in Northern China. Atmosphere (Basel) 12(3): 297. https://doi.org/10.3390/atmos12030297

Mali, M., Ragone, R., Dell’Anna, M.M., Romanazzi, G., Damiani, L. & Mastrorilli, P. 2022. Improved identification of pollution source attribution by using PAH ratios combined with multivariate statistics. Scientific Reports 12(1): 19298.

Manoli, E., Kouras, A. & Samara, C. 2004. Profile analysis of ambient and source emitted particle-bound polycyclic aromatic hydrocarbons from three sites in Northern Greece. Chemosphere 56(9): 867-878. https://doi.org/10.1016/j.chemosphere.2004.03.013

Md Firoz Khan, Mohd Talib Latif, Chee Hou Lim, Norhaniza Amil, Shoffian Amin Jaafar, Doreena Dominick, Mohd Shahrul Mohd Nadzir, Mazrura Sahani & Norhayati Mohd Tahir. 2015. Seasonal effect and source apportionment of polycyclic aromatic hydrocarbons in PM2.5. Atmospheric Environment 106: 178-190. https://doi.org/10.1016/j.atmosenv.2015.01.077

Mohammad Sadegh Hassanvand, Kazem Naddafi, Sasan Faridi, Ramin Nabizadeh, Mohammad Hossein Sowlat, Fatemeh Momeniha, Akbar Gholampour, Mohammad Arhami, Homa Kashani, Ahad Zare, Sadegh Niazi, Noushin Rastkari, Shahrokh Nazmara, Maryam Ghani & Masud Yunesian. 2015. Characterization of PAHs and metals in indoor/outdoor PM10/PM2.5/PM1 in a retirement home and a school dormitory. Science of The Total Environment 527: 100-110.

Nguyen, T.N.T., Jung, K-S., Son, J.M., Kwon, H-O. & Choi, S-D. 2018. Seasonal variation, phase distribution, and source identification of atmospheric polycyclic aromatic hydrocarbons at a semi-rural site in Ulsan, South Korea. Environmental Pollution 236: 529-539. https://doi.org/10.1016/j.envpol.2018.01.080

Nor Azura Sulong, Mohd Talib Latif, Mazrura Sahani, Md Firoz Khan, Muhammad Fais Fadzil, Norhayati Mohd Tahir, Noorlin Mohamad, Nobumitsu Sakai, Yusuke Fujii, Murnira Othman & Susumu Tohno. 2019. Distribution, sources and potential health risks of polycyclic aromatic hydrocarbons (PAHs) in PM2.5 collected during different monsoon seasons and haze episode in Kuala Lumpur. Chemosphere 219: 1-14. https://doi.org/10.1016/j.chemosphere.2018.11.195

Nur Ain Nazirah Binti Najurudeen, Md Firoz Khan, Hamidah Suradi, Ummay Ayesha Mim, Israt Nur Janntul Raim, Sara Binte Rashid, Mohd Talib Latif & Muhammad Nurul Huda. 2023. The presence of polycyclic aromatic hydrocarbons (PAHs) in air particles and estimation of the respiratory deposition flux. Science of The Total Environment 878: 163129.

Oliveira, M., Slezakova, K., Madureira, J., de Oliveira Fernandes, E., Delerue-Matos, C., Morais, S. & do Carmo Pereira, M. 2017. Polycyclic aromatic hydrocarbons in primary school environments: Levels and potential risks. Science of The Total Environment 575: 1156-1167. https://doi.org/10.1016/j.scitotenv.2016.09.195

Parshetti, G.K., Telke, A.A., Kalyani, D.C. & Govindwar, S.P. 2010. Decolorization and detoxification of sulfonated azo dye methyl orange by Kocuria rosea MTCC 1532. Journal of Hazardous Materials 176(1-3): 503-509. https://doi.org/10.1016/j.jhazmat.2009.11.058

Pongpiachan, S. & Paowa, T. 2015. Hospital out-and-in-patients as functions of trace gaseous species and other meteorological parameters in Chiang-Mai, Thailand. Aerosol and Air Quality Research 15(2): 479-493. https://doi.org/10.4209/aaqr.2013.09.0293

Pu, C., Xiong, J., Zhao, R., Fang, J., Liao, Y., Song, Q., Zhang, J., Zhang, Y., Liu, H., Liu, W., Chen, W., Zhou, H. & Qi, S. 2022. Levels, sources, and risk assessment of polycyclic aromatic hydrocarbons (PAHs) in soils of karst trough zone, Central China. Journal of Hydrology 614: 128568. https://doi.org/10.1016/j.jhydrol.2022.128568

Ramírez, N., Cuadras, A., Rovira, E., Marcé, R.M. & Borrull, F. 2011. Risk assessment related to atmospheric polycyclic aromatic hydrocarbons in gas and particle phases near industrial sites. Environmental Health Perspectives 119(8): 1110-1116. https://doi.org/10.1289/ehp.1002855

Ravindra, K., Wauters, E. & Van Grieken, R. 2008. Variation in particulate PAHs levels and their relation with the transboundary movement of the air masses. Science of The Total Environment 396(2-3): 100-110. https://doi.org/10.1016/j.scitotenv.2008.02.018

Singh, B.P., Zughaibi, T.A., Alharthy, S.A., Al-Asmari, A.I. & Rahman, S. 2023. Statistical analysis, source apportionment, and toxicity of particulate-and gaseous-phase PAHs in the urban atmosphere. Frontiers in Public Health 10: 1070663.

Sousa, G., Teixeira, J., Delerue-Matos, C., Sarmento, B., Morais, S., Wang, X., Rodrigues, F. & Oliveira, M. 2022. Exposure to PAHs during firefighting activities: A review on skin levels, in vitro/in vivo bioavailability, and health risks. International Journal of Environmental Research and Public Health 19(19): 12677. https://doi.org/10.3390/ijerph191912677

Srimurali Sampath, Govindaraj Shanmugam, Krishna Kumar Selvaraj & Babu Rajendran Ramaswamy. 2015. Spatio-temporal distribution of polycyclic aromatic hydrocarbons (PAHs) in atmospheric air of Tamil Nadu, India, and human health risk assessment. Environmental Forensics 16(1): 76-87. https://doi.org/10.1080/15275922.2014.991002

Sun, K., Song, Y., He, F., Jing, M., Tang, J. & Liu, R. 2021. A review of human and animals exposure to polycyclic aromatic hydrocarbons: Health risk and adverse effects, photo-induced toxicity and regulating effect of microplastics. Science of The Total Environment 773: 145403. https://doi.org/10.1016/j.scitotenv.2021.145403

Udaya Kumar Vandana, Chakraborty, Manishankar, Debayan Nandi, Lakkakula Satish & Mazumder. P.B. 2022. Rapidly Changing Environment and Role of Microbiome in Restoring and Creating Sustainable Approaches.  Climate Change and Microbial Diversity: 237-278. https://doi.org/10.1201/9781003302810-10.

Wang, S-W., Hsu, K-H., Huang, S-C., Tseng, S-H., Wang, D-Y. & Cheng, H-F. 2019. Determination of polycyclic aromatic hydrocarbons (PAHs) in cosmetic products by gas chromatography-tandem mass spectrometry. Journal of Food and Drug Analysis 27(3): 815-824. https://doi.org/10.1016/j.jfda.2019.01.003

Watson, J.G., Tropp, R.J., Kohl, S.D., Wang, X. & Chow, J.C. 2017. Filter processing and gravimetric analysis for suspended particulate matter samples. Aerosol Science and Engineering 1(2): 93-105. https://doi.org/10.1007/s41810-017-0010-4

World Health Organization. 2010. WHO Guidelines for Indoor Air Quality: Selected Pollutants. World Health Organization. Regional Office for Europe.

Wu, D., Chen, L., Ma, Z., Zhou, D., Fu, L., Liu, M., Zhang, T., Yang, J. & Zhen, Q. 2024. Source analysis and health risk assessment of polycyclic aromatic hydrocarbon (PAHs) in total suspended particulate matter (TSP) from Bengbu, China. Scientific Reports 14(1): 5080.

Yadav, I.C., Devi, N.L., Li, J. & Zhang, G. 2018. Altitudinal and spatial variations of polycyclic aromatic hydrocarbons in Nepal: Implications on source apportionment and risk assessment. Chemosphere 198: 386-396.

Yang, D., Qi, S., Zhang, Y., Xing, X., Liu, H., Qu, C., Jia, L. & Li, F. 2013. Levels, sources and potential risks of polycyclic aromatic hydrocarbons (PAHs) in multimedia environment along the Jinjiang River mainstream to Quanzhou Bay, China. Marine Pollution Bulletin 76(1-2): 298-306. https://doi.org/10.1016/j.marpolbul.2013.08.016

Yu, Y., Guo, H., Liu, Y., Huang, K., Wang, Z. & Zhan, X. 2008. Mixed uncertainty analysis of polycyclic aromatic hydrocarbon inhalation and risk assessment in ambient air of Beijing. Journal of Environmental Sciences 20(4): 505-512. https://doi.org/10.1016/s1001-0742(08)62087-2

Yunker, M.B., Macdonald, R.W., Vingarzan, R., Mitchell, R.H., Goyette, D. & Sylvestre, S. 2002. PAHs in the Fraser River basin: A critical appraisal of PAH ratios as indicators of PAH source and composition. Organic Geochemistry 33(4): 489-515. https://doi.org/10.1016/s0146-6380(02)00002-5

 

*Pengarang untuk surat-menyurat; email: jar0101@um.edu.my 

 

 

 

 

 

 

 

 

 

           

sebelumnya